\qquad
Use the following information for 1-4, lots of people work for 30 years before they retire. Saving for your retirement is crucial. Luckily, you have $\$ 10,000$ to put into an account that earns interest. Use the formula: $B=p \bullet(1+r)^{t}$ where B is the Balance, p is the principal (starting amount), r is the interest rate, and t is the number of years.

1. If you put your $\$ 10,000$ into an account that earns $\mathbf{8 \%}$ compound interest at the beginning of your career, how much money will be in your account at the end of your career? Show all of your work for full credit. Round your answer to the nearest penny. $B=p \bullet(1+r)^{t}$

\#1 ANSWER:

\qquad
2. If you put your $\$ 10,000$ into an account that earns $\mathbf{1 5 \%}$ compound interest for the last $\mathbf{1 0}$ years of your career, how much money will be in your account at the end of your career? Show all of your work for full credit. Round your answer to the nearest penny. $B=p \bullet(1+r)^{t}$

\#2 ANSWER:

\qquad
3. Which problem, \#1 or \#2, would be the best if you had $\$ 5,000$ for both? Show your work to help decide with your answer. $B=p \bullet(1+r)^{t}$

CIRCLE ONE

\#3 ANSWER: \#1 OR \#2

4. Which problem, \#1 or \#2, would be the best if you had the same amount for \#1 but had \$20,000 for \#2? Show your work to help decide with our answer. $B=\mathbf{p e}(\mathbf{1}+r)^{t}$

CIRCLE ONE

