Scientific Notation

Scientific Notation - a method of expressing very ______ and very ______ quantities.

Examples...

 $6.2 \times 10^5 \qquad 1.278 \times 10^{12} \qquad 9.84 \times 10^{-8} \qquad 8.914 \times 10^{-20}$

Circle the two numbers above that you think are really small. What is making them small?

Numbers written in scientific notation include three parts...

- 1. The first number is a number between _____ and _____.
- 2. The operation is multiplication.
- **3.** The last number is a power with base _____.

For each of the following, distinguish if it is written in scientific notation. If it is not, state why.

1. 8.1 x 10 ⁻³	2. 0.78 x 10 ¹²	3. 4.34 + 10 ⁸
4. 13.2 x 10 ⁻²⁰	5. 6.124 x 10 ³²	6. 2.1 x 10 ²¹²
7. 3.9 x 6 ¹⁰	8. 11.2 x 10 ⁵²	9. 9.73 x 10 ⁻¹⁴

In order to convert a number to "scientific notation", use the steps written below...

- Decide where the decimal point should go to make the number fall between 1 and 10. Write that number down.
- 2. Now count the number of spaces it takes to move the decimals back to it's original spot. This number becomes the exponent on your power of ten.
- 3. Finally decide if the exponent should be positive or negative.
 - *If you had to move left, it will be negative.

*If you had to move right, it will be positive.

Now let's try some examples together...

10. 365,000	11. 0.000000076	12. 6,725,000	13. 0.000000356
-------------	-----------------	---------------	-----------------

Which problems above ended up with a negative exponent?

Which problems above ended up with a positive exponent?

When using scientific notation, numbers less than one have a ______ exponent.

Now you try...

12. The weights of various sea creatures are shown in the table. Write each weight in scientific notation.

Sea Creature	Blue Whale	Whale Shark	Eel	Minnow
Weight (lbs) – Standard Notation	250,000	41,200	133.25	0.95
Weight (lbs) – Scientific Notation				

13. An estimate of the world's population in 2010 was 6,880,000,000. Write the world's population in scientific notation.

To translate from scientific notation to standard notation, you can move the decimal point the number of places indicated by the exponent.

When the exponent is positive, move _____. When the exponent is negative, move _____.

Let's try some together...

1st, predict if the number will be really big or really small. Then write each number in standard notation...

Comparing numbers in scientific notation.

17. The approximate weight of a whale shark is 4×10^4 pounds. The approximate weight of a common dolphin is 2×10^2 pounds. How many times as great as the weight of the whale shark is the weight of the dolphin?

Hints:

First compare the values between 1 and 10. *The* "4" in 4 x 10⁴ is _____ times as great as the "2" in 2 x 10².

Next compare the powers of 10. 10^4 is _____ times as great as 10^2 .

Circle the most reasonable answer. *The weight of the whale shark is 2 / 20 / 200 / 2000 times as great as the weight of the dolphin.*

18. Scientists captured and released a whale shark that weighted about 6×10^5 units. Circle the best choice for the units this measurement is given in: ounces / pounds / tons

Explain your choice.