Solving Linear Systems by Linear Combinations

Quick Review

- 1. Align the equations with like terms in columns.
- 2. If needed, multiply one or both of the equations by a number so that there are opposite coefficients for one of the variables.
- 3. Add the equations. Solve for the remaining variable.
- 4. Substitute the value from Step 3 for that variable in either of the original equations. Solve for the other variable.
- 5. Check your solution (x, y) by substituting the x and y values in the original equations.

$$-3x + y = 1$$
 (Multiply by -2)
 $2x + 2y = 10$

$$6x - 2y = -2 + 2x + 2y = 10 8x = 8$$

$$-3(1) + y = 1$$

 $y = 4$

Solution: (1, 4)

$$-3x + y = 1$$
 $2x + 2y = 10$
 $-3(1) + 4 \stackrel{?}{=} 1$ $2(1) + 2(4) \stackrel{?}{=} 10$
 $1 = 1$ $10 = 10$

Use linear combinations to solve each linear system. Then use the answer code to reveal a message.

$$\frac{P}{(5,-2)} \frac{E}{(1,1\frac{1}{2})} \frac{R}{(-6,13)} \frac{F}{(\frac{1}{3},2)} \frac{E}{(2,1)} \frac{C}{(3,-1)} \frac{T}{(9,-4)}$$

1.
$$2x + 3y = 7$$

$$4x - 3y = 5$$

Solution:
$$(2,)$$

2.
$$4x + 5y = 16$$

$$-4x - 10y = 4$$

Solution:
$$(9,-4)$$

3.
$$-6x - 2y = 10$$

 $3x + 2y = 8$
Solution: $(-6/3)$

4.
$$2x + 4y = 8$$

 $-5x + 4y = 1$
Solution: $(1, 1\frac{1}{2})$ E

5.
$$3x + y = 8$$

 $x + 2y = 1$
Solution: (3,-1)

6.
$$6x - 3y = -4$$

 $-3x + 5y = 9$
Solution: $(\frac{1}{3}, 2)$ F

7.
$$3x - 5y = 25$$

 $2x + 4y = 2$
Solution: $(5, 7)$