\qquad

Multiplying and Dividing Powers

Compute what happens when we multiply the following...

Problem	Factor Out	Standard Notation	Write Answer as a Power
$10^{4} \bullet 10^{3}$			
$10^{1} \bullet 10^{2}$			
$10^{2} \bullet 10^{5}$			
$10^{4} \bullet 10^{2}$			
$10^{25} \bullet 10^{100}$			

1. What patterns or short cuts do you notice about this process?
2. What would $10^{\mathrm{m}} \bullet 10^{\mathrm{n}}$ equal?

This property works for powers of any number, not just powers of ten.

General Rule:

Compute what happens when we divide the following...

Problem	Write with a Horizontal Fraction	Factor Out	Reduced	Standard Notation	Write Answer as a Power
$10^{4} \div 10^{2}$					
$10^{3} \div 10^{2}$					
$10^{5} \div 10^{3}$					
$10^{2} \div 10^{1}$					
$10^{32} \div 10^{20}$					

1. What patterns or short cuts do you notice about this process?
2. What would $10^{\mathrm{m}} \div 10^{\mathrm{n}}$ equal?

This property works for powers of any number, not just powers of ten.

General Rule:

