Multiplying and Dividing Powers

Problem	Factor Out	Standard Notation	Write Answer as a Power
$10^4 \bullet 10^3$	10 • 10• 10• 10• 10• 10• 10	10,000,000	107
$10^1 \bullet 10^2$	10 • 10• 10	1,000	10 ³
$10^2 \bullet 10^5$	10 • 10• 10• 10• 10• 10• 10	10,000,000	107
$10^4 \bullet 10^2$	10 • 10• 10• 10• 10• 10	1,000,000	106
$10^{25} \bullet 10^{100}$	Too many factors of 10 to do	Too many 0's	10 ¹²⁵

Compute what happens when we multiply the following...

- 1. What patterns or short cuts do you notice about this process?
 - ³⁵ A power of base 10 is factors of 10 equal to the number of the exponent. For example, $10^5 = 10 \bullet 10 \bullet 10 \bullet 10 \bullet 10$
 - ³⁵ A power of base 10 is a 1 followed by the number of zeros in the exponent. For example, 10⁵ is 100,000
 - ³⁵ When multiplying with similar bases the answer is the sum of the exponents with that same base. For example, $10^1 \bullet 10^2 = 10^{1+2} = 10^3$
- 2. What would $10^{m} \bullet 10^{n}$ equal?
 - ³⁵ Using the pattern, $10^{m} \bullet 10^{n} = 10^{m+n}$

This property works for powers of any number, not just powers of ten.

General Rule:

 $\mathbf{b}^{x} \bullet \mathbf{b}^{y} = \mathbf{b}^{x+y}$

Compute	what hapr	oens when	we divide	the fo	llowing
compute	million mapp		we arriae		110 W IIIg

Problem	Write with a Horizontal Fraction	Factor Out	Reduced	Standard Notation	Write Answer as a Power
$10^4 \div 10^2$	$\frac{10^4}{10^2}$	$\begin{array}{r} 10 \bullet 10 \bullet 10 \bullet 10 \\ 10 \bullet 10 \end{array}$	<u>10 • 10</u> 1	100	10 ²
$10^3 \div 10^2$	$\frac{10^3}{10^2}$	$\frac{10 \bullet 10 \bullet 10}{10 \bullet 10}$	<u>10</u> 1	10	10 ¹
$10^5 \div 10^3$	$\frac{10^5}{10^3}$	$\frac{10 \bullet 10 \bullet 10 \bullet 10 \bullet 10}{10 \bullet 10 \bullet 10}$	<u>10 • 10</u> 1	100	10 ²
$10^2 \div 10^1$	$\frac{10^2}{10^1}$	<u>10 • 10</u> 10	<u>10</u> 1	10	10 ¹
$10^{32} \div 10^{20}$	$\frac{10^{32}}{10^{20}}$	Too many factors of 10 to do	Too many factors of 10 to do	Too many 0's	10 ¹²

- 1. What patterns or short cuts do you notice about this process?
 - ³⁵ A power of base 10 is factors of 10 equal to the number of the exponent. For example, $10^5 = 10 \bullet 10 \bullet 10 \bullet 10 \bullet 10$
 - ³⁵ A power of base 10 is a 1 followed by the number of zeros in the exponent. For example, 10⁵ is 100,000
 - ³⁵ When dividing with similar bases the answer is the top exponent MINUS the bottom exponent with that same base. For example, $10^7 \div 10^2 = 10^{7-2} = 10^5$
- 2. What would $10^{m} \div 10^{n}$ equal?

³⁵ Using the pattern, $10^{m} \div 10^{n} = 10^{m - n}$

This property works for powers of any number, not just powers of ten.

General Rule:

 $\mathbf{b}^{x} \div \mathbf{b}^{y} = \mathbf{b}^{x-y}$