Multiplying and Dividing Powers

Compute what happens when we multiply the following...

Problem	Factor Out	Standard Notation	Write Answer as a Power
$10^{4} \bullet 10^{3}$	$10 \bullet 10 \bullet 10 \bullet 10 \bullet 10 \bullet 10 \bullet 10$	$10,000,000$	10^{7}
$10^{1} \bullet 10^{2}$	$10 \bullet 10 \bullet 10$	1,000	10^{3}
$10^{2} \bullet 10^{5}$	$10 \bullet 10 \bullet 10 \bullet 10 \bullet 10 \bullet 10 \bullet 10$	$10,000,000$	10^{7}
$10^{4} \bullet 10^{2}$	$10 \bullet 10 \bullet 10 \bullet 10 \bullet 10 \bullet 10$	$1,000,000$	10^{6}
$10^{25} \bullet 10^{100}$	Too many factors of 10 to do	Too many 0 's	10^{125}

1. What patterns or short cuts do you notice about this process?
${ }_{17}^{35}$ A power of base 10 is factors of 10 equal to the number of the exponent. For example, $10^{5}=10 \bullet 10 \bullet 10 \bullet 10 \bullet 10$
${ }_{17}^{35}$ A power of base 10 is a $\mathbf{1}$ followed by the number of zeros in the exponent. For example, 10^{5} is $\mathbf{1 0 0 , 0 0 0}$
${ }_{17}^{35}$ When multiplying with similar bases the answer is the sum of the exponents with that same base. For example, $10^{1} \bullet 10^{2}=10^{1+2}=10^{3}$
2. What would $10^{\mathrm{m}} \bullet 10^{\mathrm{n}}$ equal?
${ }_{17}^{35}$ Using the pattern, $\mathbf{1 0}^{\mathrm{m}} \bullet \mathbf{1 0}^{\mathrm{n}}=\mathbf{1 0}^{\mathrm{m}+\mathrm{n}}$

This property works for powers of any number, not just powers of ten.

General Rule:

$$
\mathbf{b}^{35} \bullet \mathbf{b}^{\mathbf{y}}=\mathbf{b}^{\mathbf{x}+\mathbf{y}}
$$

Compute what happens when we divide the following...

Problem	Write with a Horizontal Fraction	Factor Out	Reduced	Standard Notation	Write Answer as a Power
$10^{4} \div 10^{2}$	$\frac{10^{4}}{10^{2}}$	$\frac{10 \bullet 10 \bullet 10 \bullet 10}{10 \bullet 10}$	$\frac{10 \bullet 10}{1}$	100	10^{2}
$10^{3} \div 10^{2}$	$\frac{10^{3}}{10^{2}}$	$\frac{10 \bullet 10 \bullet 10}{10 \bullet 10}$	$\frac{10}{1}$	10	10^{1}
$10^{5} \div 10^{3}$	$\frac{10^{5}}{10^{3}}$	$\frac{10 \bullet 10 \bullet 10 \bullet 10 \bullet 10}{10 \bullet 10 \bullet 10}$	$\frac{10 \bullet 10}{1}$	100	10^{2}
$10^{2} \div 10^{1}$	$\frac{10^{2}}{10^{1}}$	$\frac{10 \bullet 10}{10}$	$\frac{10}{1}$	10	10^{1}
$10^{32} \div 10^{20}$	$\frac{10^{32}}{10^{20}}$	Too many factors of 10 to do	Too many factors of 10 to do	Too many 0 's	10^{12}

1. What patterns or short cuts do you notice about this process?
${ }_{17}^{35}$ A power of base $\mathbf{1 0}$ is factors of $\mathbf{1 0}$ equal to the number of the exponent. For example, $10^{5}=10 \bullet 10 \bullet 10 \bullet 10 \bullet 10$
${ }_{17}^{35}$ A power of base 10 is a $\mathbf{1}$ followed by the number of zeros in the exponent. For example, 10^{5} is $\mathbf{1 0 0 , 0 0 0}$
${ }_{17}^{35}$ When dividing with similar bases the answer is the top exponent MINUS the bottom exponent with that same base. For example, $10^{7} \div 10^{2}=10^{7-2}=10^{5}$
2. What would $10^{\mathrm{m}} \div 10^{\mathrm{n}}$ equal?
${ }_{17}^{35}$ Using the pattern, $10^{\mathrm{m}} \div \mathbf{1 0}^{\mathrm{n}}=\mathbf{1 0}^{\mathrm{m}-\mathrm{n}}$
This property works for powers of any number, not just powers of ten.

General Rule:

$$
\mathbf{b}^{35} \div \mathbf{b}^{\mathbf{y}}=\mathbf{b}^{\mathbf{x}-\mathbf{y}}
$$

