Name: \qquad

Slope Between Two Points

For 1-6 find the slope between two points using the formula shown below. Show all of your work \& reduce.

Slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { Change in } y^{\prime} s}{\text { Change in } x^{\prime} s}=\frac{\text { Rise }}{\text { Run }}=\frac{\text { Fall }}{\text { Run }}=\frac{\Delta y^{\prime} s}{\Delta x^{\prime} s}$

1. $(10,3) \&(7,9)$
\#1: \qquad

$$
m=\frac{-}{-}=
$$

2. $(4,-2) \&(4,3)$
\#2:

$$
m=\frac{-}{-}=
$$

3. $(2,10) \&(8,7)$
\#3: \qquad

$$
m=\frac{-}{-}=
$$

4. $(7,3) \&(8,5)$
\#4: \qquad

$$
m=\frac{-}{-}=
$$

5. $(12,11) \&(9,5)$
\#5: \qquad

$$
m=\frac{-}{-}=\square=
$$

6. $(6,-2) \&(3,-2)$
\#6: \qquad

$$
m=\frac{-}{-}=
$$

Find the slope between two points and then write an equation in Slope-Intercept Form ($\mathbf{y}=\mathbf{m x}+\mathbf{b}$).

Example: $(5,-1) \&(-10,-7)$
Step 1: Find the slope using the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
m=\frac{-}{-}=
$$

Step 2: Pick one of the points: (,)

Step 3: Use the Slope you found in Step 1 and the point in Step 2 to substitute the values into $\mathbf{y}=\mathbf{m x + b}$ and then solve for b.

$$
\begin{array}{rlrl}
(\quad) & =(\quad)(\quad)+b \\
& = & +b \\
& =b
\end{array}
$$

Step 4: Write your answer in Slope-Intercept Form $\mathbf{y}=\square \mathbf{x}+\square$

For 7-12, find the slope between two points and then write an equation in Slope-Intercept Form $(\mathbf{y}=\mathbf{m x}+\mathbf{b})$. Show all of your work \& reduce.
7. $(-5,-9) \&(3,7)$
\#7: \qquad
8. $(6,-2) \&(-3,-5)$
\#8: \qquad
9. $(1,7) \&(-7,-41)$
\#9: \qquad
10. $(5,-16) \&(-3,8)$
\#10:
11. $(8,1.25) \&(-4,-1.75)$
\#11: \qquad
12. $(1,8) \&(-9,-2)$
\#12:

