\qquad

BALLOON LAUNCH!

The equation $\boldsymbol{d}=\boldsymbol{V}_{\boldsymbol{x}} \boldsymbol{t}$ tells us the distance our balloon will travel through the air with no external forces other than gravity, so this should be easy...we just need to substitute in for \boldsymbol{V}_{x} and \boldsymbol{t} then solve for \boldsymbol{d}. Right? Not so fast we have some "Algebra" to do ...©

FIND THE INITIAL VELOCITY OF THE BALLOON

V_{x} stand for horizontal velocity and we can't find that until we know V_{i} the initial velocity the balloon has when it leaves the launcher. To find \mathbf{V}_{i} we will use the following equation $a=\frac{-2 V_{i}}{t}$ Solve this equation for V_{i} below.

In order to calculate $\boldsymbol{V}_{\boldsymbol{i}}$ we must know \boldsymbol{a} and \boldsymbol{t}. \boldsymbol{a} stands for acceleration of gravity and is equal to -9.8. \boldsymbol{t} represents the average time in the air when the balloon is launched straight up. Let's go outside and time it!

Time 1: \qquad sec Time 2: \qquad sec

Time 3: \qquad sec

Time 4: \qquad sec

Time 5: \qquad sec

Avg Time (\boldsymbol{t}): \qquad sec Now that we know \boldsymbol{a} and \boldsymbol{t}, substitute to find the initial velocity $\left(\boldsymbol{V}_{i}\right)$ of the balloon. The unit should be $\frac{m}{\sec }$.

$$
\text { Initial Velocity }\left(V_{i}\right)=
$$

\qquad
Your answer above is in meters per second $\frac{m}{\sec }$. Just for FUN, convert that velocity to miles per hour $\frac{m i}{h r}$. $\frac{1 m}{\mathrm{sec}}=\frac{2.24 m i}{h r}$

FIND THE HORIZONTAL AND VERTICAL VELOCITIES

The equation used to find $\boldsymbol{V}_{\boldsymbol{x}}$ (the horizontal velocity) is $.866=\frac{V_{x}}{V_{i}}$. The equation used to find $\boldsymbol{V}_{\boldsymbol{y}}$ (the vertical velocity) is $.5=\frac{V_{y}}{V_{i}}$. Solve the two equations for \boldsymbol{V}_{x} and $\boldsymbol{V}_{\boldsymbol{y}}$ below.

Now subst itute into the enuat ions you just wrote to find the horizontal velocity (\boldsymbol{V}_{x}) and the vert ical velocity $\left(\boldsymbol{V}_{y}\right)$. Both units will be in $\frac{m}{\mathrm{sec}}$

$$
\text { Horizontal Velocity }\left(V_{x}\right)=
$$

\qquad

$$
\text { Vertical Velocity }\left(V_{y}\right)=
$$

\qquad

FIND THE TIME BEFORE IMPACT

We need to know how long the balloon will be in the air. To find this, we use the equation $a=\frac{-2 V_{y}}{t} \quad$ and solve for t. This t represents the time your balloon will be in the air WHEN LAUNCHED AT AN ANGLE OF 30 DEGREES. It is different from the average t used earlier, which was the time your balloon was in the air when launched straight up. Solve for t below.

Now subst itute into the equat ion you just wrote to find the time the balloon is in the air when launched at 30 degrees (\boldsymbol{t}). Remember, $\boldsymbol{a}=-9.8$.
\qquad

FIND THE DISTANCE TRAVELED

Like I said earlier, the equation $\boldsymbol{d}=\boldsymbol{V}_{\boldsymbol{x}} \boldsymbol{t}$ tells us the distance our balloon will travel through the air with no external forces other than gravity. Now we know V_{x} and \boldsymbol{t} we can calculate that distance in meters! Show your work below:

Distance $(\boldsymbol{d})=$

\qquad
\boldsymbol{d} is how far away your balloon will land in meters! The last thing we have to do is convert that to yards so we can test it on the football field! ($1 \mathrm{~m}=1.09 \mathrm{yds}$)

$$
\text { Distance }(\boldsymbol{d})=
$$

\qquad

