Families of Functions Intro

7th Grade Accelerated Math

1. A student invests \$100 and it doubles in value every 5 years. Graph the situation to show the amount of money the student would have after...

- 0 years 5 years -> \$200 10 years -> \$400

Using your graph, predict how much money this student would have after 8 years.

Exponential Family

2. A football is punted with an initial vertical speed of 30 m/s. It slows down until it reaches the top of its path after 3 seconds, and then begins to speed up on its way back down. Because of gravity, the speed changes by 10 m/s every second. Find the speed of the football after...

- -> 30 m/sec 0 seconds 1 second
- 2 seconds 7 10 m/sec
- 3 seconds (top of path) -> 0 m/sec
- 4 seconds

Using your graph, predict the speed of the football after 2.5 seconds

$$y = 5 x - 3$$

y=5 x-3 Absolute Value

Family
It takes 4 people 10 hours to paint the Junior High School. Graph the situation to show the amount of time it would take to complete the job if...

- 1 person was painting 40 hrs 2 people were painting — 7 20 4/5
- 4 people were painting
- 8 people were painting

Using your graph, predict how long it would take to complete the job if 5 people were working.

$$y = \frac{40}{x}$$

Rational Family

4. A student has \$25 and saves an additional \$5 each day. Graph the situation to show the amount of money the

student would have after...

5 additional days

9 additional days

Using your graph, predict how many days it would take to earn \$45.

Linear Family

5. Find the side length of a square with the following areas...

Using your graph, predict the side length of a square with an area of 20 ft2.

$$y = \sqrt{x}$$

Root Family

6. Find the area (length x width) of a rectangle with a perimeter of 100 feet, and a width of...

• 2 feet \longrightarrow 96 ft $\stackrel{?}{\rightarrow}$ length = 48 ft $\stackrel{?}{\rightarrow}$ 10 feet \longrightarrow 400 ft $\stackrel{?}{\rightarrow}$ length = 40 ft $\stackrel{?}{\rightarrow}$ 20 feet \longrightarrow 600 ft $\stackrel{?}{\rightarrow}$ length = 30 ft $\stackrel{?}{\rightarrow}$ 25 feet \longrightarrow 625 ft $\stackrel{?}{\rightarrow}$ length = 25 ft $\stackrel{?}{\rightarrow}$ 30 feet \longrightarrow 600 ft $\stackrel{?}{\rightarrow}$ length = 25 ft $\stackrel{?}{\rightarrow}$ 18 feet \longrightarrow 48 feet \longrightarrow 48 feet

Using your graph, predict the width of a rectangle with an area of 350 ft^2 .

 $y = -(x-25)^2 + 625$ or $y = -x^2 + 50x$

Quadratic Family