NOTES on Ratios and Rates

Ratios:
4 to 7
$\frac{4}{7}$
$4: 7$
(All 3 mean the same)
5 to 2
$\frac{5}{2}$
$5: 2$
(All 3 mean the same)

Creating Ratios: Use the diagram below to create $\mathbf{3}$ different ratios.

Ratio \# 1: \qquad

Ratio \# 2: \qquad

Expressing Ratios in Simplest Form:

5 to $20=$ \qquad
\qquad
$\frac{50 \mathrm{sec}}{2 \min }=$
\qquad
$14: 7=$ \qquad $\frac{27}{3}=$ \qquad
$5 \mathrm{ft}: 60 \mathrm{in}=$ \qquad
$10 \mathrm{~min}: 1 \mathrm{hr}=$ \qquad

Rates are like Ratios but with UNITS in the numerator AND denominator:
$\frac{\$ 5}{20 \text { lemons }}$
$\frac{162 \text { students }}{6 \text { classes }}$
$\frac{\$ 81.64}{26 \text { gallons }}$

UNIT RATES are Rates that have a DENOMINATOR OF 1. The unit Rates for the three Rates above are as follows:
$\frac{\$.25}{\text { lemon }}$
$\frac{27 \text { students }}{\text { class }}$
$\frac{\$ 3.14}{\text { gallon }}$

Example: A cyclist completed a 200-lap race in 2 and a half hours. Find the Unit Rate:

$$
\begin{aligned}
& \frac{\text { Number of laps }}{\text { Number of hours }}=\frac{200 \text { laps }}{2.5 \text { hours }} \\
& \text { The Unit Rate }=\frac{80 \text { laps }}{\text { hour }}
\end{aligned}
$$

Example: Find the Unite Rate of each item to see which has the better buy. A milk container that costs $\$ 2.99$ for 64 oz or a milk container that costs $\$ 1.59$ for 12 oz .
$\frac{\$ 2.99}{64 o z} \longleftarrow$ Write the Rates for both comparing \$ to oz $\longrightarrow \frac{\$ 1.59}{12 \mathrm{oz}}$
$\frac{\$.05}{o z} \longleftarrow \underset{\sim}{\text { Divide to get the Unit Rates for both }} \begin{gathered}\text { (To the nearest CENT) }\end{gathered} \longrightarrow \frac{\$.13}{o z}$

