NOTES on Ratios and Rates

Ratios:	4 to 7	$\frac{4}{7}$	4:7	(All 3 mean the same)
	5 to 2	$\frac{5}{2}$	5:2	(All 3 mean the same)

Creating Ratios: Use the diagram below to create 3 different ratios.

	Ratio # 1:
	Ratio # 2:
	Ratio # 3:
Expressing Ratios in Simplest Form:	
5 to 20 =	14:7=
$\frac{24}{36}$ =	$\frac{27}{3}$ =
$\frac{50 \text{ sec}}{2 \text{ min}} = \underline{\qquad}$	5 ft : 60 in =
$\frac{30 \text{ sec}}{3 \text{ min}} =$	10 min : 1 hr =
5 11111	

Rates are like Ratios but with UNITS in the numerator AND denominator:

$$\frac{\$5}{20 \ lemons} \qquad \frac{162 \ students}{6 \ classes} \qquad \frac{\$81.64}{26 \ gallons}$$

UNIT RATES are Rates that have a DENOMINATOR OF 1. The unit Rates for the three Rates above are as follows:

$$\frac{\$.25}{lemon} \qquad \frac{27 \text{ students}}{class} \qquad \frac{\$3.14}{gallon}$$

Example: A cyclist completed a 200–lap race in 2 and a half hours. Find the Unit Rate:

$$\frac{Number of \ laps}{Number of \ hours} = \frac{200 \ laps}{2.5 \ hours}$$

$$The \ Unit \ Rate = \frac{80 \ laps}{hour}$$

Example: Find the Unite Rate of each item to see which has the better buy. A milk container that costs \$2.99 for 64 oz or a milk container that costs \$1.59 for 12 oz.

\$2.99 64 <i>oz</i>	← Write the Rates for both comparing \$ to oz →	\$1.59 12 oz
$\frac{\$.05}{oz}$	← Divide to get the Unit Rates for both (To the nearest CENT)	$\frac{\$.13}{oz}$