FUNCTION RULE POLYGON ACTIVITY (\# OF DIAGONALS)

1) Fill-in the table below. It may help to draw a picture of the polygon to find the number of diagonals.

Type of Polygon	Number of Sides	Number of Vertices	Number of Diagonals
Triangle			
Quadrilateral			
Pentagon			
Hexagon			
Heptagon			
Octagon			
Nonagon			
Decagon			

2) Create the function rule $D(v)$ to find the total number of diagonals depending upon the number of vertices of a polygon. Use the table on the back of this sheet to help you organize the information at creating the function rule.

Let $\mathbf{v}=$ Number of vertices in a polygon
$D(v)=$ Total \# of diagonals in a polygon of v vertices.
3) Calculate the number of diagonals if a polygon has 100 vertices. Show your work by using the function rule you found from \#2.

\# of Vertices	\# of Diagonals Per Vertex	Total \# of Diagonals (No Duplicates)
3		
4		
5		
6		
7		
8		
9		
10		

