FUNCTION RULE POLYGON ACTIVITY (\# OF DIAGONALS)

1) Fill-in the table below. It may help to draw a picture of the polygon to find the number of diagonals.

Type of Polygon	Number of Sides	Number of Vertices	Number of Diagonals
Triangle	3	3	0
Quadrilateral	4	4	2
Pentagon	5	5	5
Hexagon	6	6	9
Heptagon	7	7	14
Octagon	8	8	20
Nonagon	9	9	27
Decagon	10	10	35

2) Write the function rule $D(v)$ to find the total number of diagonals depending upon the number of vertices of a polygon.

Let $\mathbf{v}=$ Number of vertices in a polygon
$D(v)=$ Total \# of diagonals in a polygon of v vertices.
The formula $D(v)=\frac{v(v-3)}{2}$
3) Find the number of diagonals if a polygon has 100 vertices. Show your work by using the function rule you found from \#2.
Replace 100 in for v :
$D(v)=\frac{(100)((100)-3)}{2}$
$D(v)=\frac{(100)(97)}{2}$
$D(v)=\frac{9,700}{2}$
$D(v)=4,850$ diagonals in a polygon of 100 vertices.

\mathbf{v}	$\frac{\mathbf{V} \cdot \mathbf{(v - 3)}}{\mathbf{2}}$	
\# of Vertices	\# of Diagonals Per Vertex	Total \# of Diagonals (No Duplicates)
3	0	0
4	1	2
5	2	5
6	3	9
7	4	14
8	5	20
9	6	27
10	7	35

