More Practice with Graphing

Solve each of the following systems by graphing.

1.
$$y = -2x + 1 \rightarrow m = \frac{12}{71}$$
 $b = (0, 1)$
 $2x + y = -1$
 $-2x$ $-2x$

(No Solutions (Parallel Lines)

2.
$$x + y = 3 \Rightarrow y = -x + 3$$
 $m = \frac{1}{3}$ $b = (0,3)$
 $2x = 10 - 2y$

4.
$$x - y = 3$$

 $2x + y = 3$

$$x-y=3$$

 $-x$
 $y=-x+3$
 $y=x+-3$
 $b=(0,-3)$

5x + 2y = 105x - 2y = 10

6. x + y = -83x + y = -6

$$x+y=-8$$
 $3x+y=-6$
 $-3x$ $-3x$
 $y=-x+-8$ $y=-3x+-6$

$$m = \frac{43}{71}$$
 $m = \frac{43}{71} = \frac{13}{21}$

9. Suppose you plan to start taking an aerobics class. Non-members pay \$4 per class while members pay a \$10 fee plus an additional \$2 per class.

a. Create a system of linear equations to model the situations. $x = \# \circ f = c \log s \in S$ $y = \# \circ$

c. Distinguish what your solution means in the context of the problem?

(5, 20) A+5 c/asses, i+ cos+ +he same for either person.

10. Suppose you are testing two fertilizers on bamboo plants A and B, which are growing under

of classes

10. Suppose you are testing two fertilizers on bamboo plants A and B, which are growing under identical conditions. Plant A is 6 cm tall and growing at a rate of 4 cm/day. Plant B is 10 cm tall and growing at a rate of 2 cm/day.

a. Create a system of linear equations to model the situations.

X=# of days

Plant A \Rightarrow y=4x+6 m=74b=(0.6)

X=Total Height of bam box cum) Plant B \Rightarrow y=2x+10 m=12b=(0.10)

b. Solve the system by graphing.

of day S c. Distinguish what your solution means in the context of the problem?