Tn.	tegr	124	-04	2
TIL	ILUI	u	EU	6

	Ken			
Name	11.0 4			
pendent vs. D	ependent /			

Indep Compound Events

Find the following probabilities and determine if the events are independent or dependent.

1. You roll a fair 6-sided die and then draw one card from a standard deck of cards. What is the probability of getting a 2 on the die and drawing a heart? $P(2 \text{ and heart}) = \frac{1}{3} \cdot \frac{13}{52} \rightarrow \frac{1}{6} \cdot \frac{1}{4} = \frac{1}{24}$ Probability = $\frac{1}{24}$ Dependent

2. You have 3 pairs of red socks, 2 pairs of green socks and 7 pairs of white socks. What is the probability of pulling out one red pair and then pulling out one white pair (without replacement)? $\rho(R \text{ then } w)$ $\frac{3}{17} \cdot \frac{7}{11} \rightarrow \frac{1}{4} \cdot \frac{7}{11} = \frac{7}{44}$

Probability =

Independent

Dependent

3. You have 3 pairs of red socks, 2 pairs of green socks and 7 pairs of white socks. What is the probability of pulling out one red pair and then pulling out one white pair (with replacement)? $p(Randw) \frac{3}{17} \cdot \frac{7}{17} \rightarrow \frac{1}{4} \cdot \frac{7}{12} = \frac{7}{48}$

Independent

Dependent

4. You are a 9/10 free throw shooter. You are at the free throw line shooting two free throws. What is the probability that you will make both free throws?

p(Make and Make) 9. 9 = 8/

Probability =

Independent

Dependent

5. You are picking numbers for the lottery, the daily 3. You may choose any number from 0-9. There is a separate set of 10 numbered balls for each of the three digits you may choose. What is the probability of matching all three numbers?

Independent)

Dependent

	$\mathcal{K}^{\mathcal{L}}$
6.	In Illinois, the daily 3 is different. They do not have a different set of numbered balls
	for each digit. They have one set of numbered balls, and they do not replace a ball once
	it has been selected. What is the probability of matching all three numbers in Illinois?
	P(Match then Match then match) = 10.19.18 = 720
	10 9 8 - 720
	Probability = 720 Independent Dependent

7. You draw three	cards from a standard de	eck of playing card	ls and do NOT replo	ice them	
after each draw	What is the probability	y of drawing a 3, t	hen a queen, and the	en an ace?	
P(3then 9	ueenthen Ace) =	4 4.	4 1.4	2 =	8
	8	52 51.	50 7 13 51	52	16,313
Probability =	5,575	Independe	nt Dependent		1

8. You draw three cards from a standard deck of playing cards and do NOT replace them after each draw. What is the probability of drawing the 6 of hearts, then any heart, and then a black jack?
$$p(6 \text{ kear} + \text{then hearts} + \text{then black Jack}) = \frac{12}{52} \cdot \frac{1}{51} \cdot \frac{1}{50}$$
 $\Rightarrow \frac{12}{52} \cdot \frac{1}{51} \cdot \frac{1}{25} \Rightarrow \frac{3}{13} \cdot \frac{1}{51} \cdot \frac{1}{25} \Rightarrow \frac{1}{13} \cdot \frac{1}{13} \cdot \frac{1}{25} = \frac{1}{5,525}$

Probability = . Independent Dependent

10. You and your friend are dress shopping for the winter dance. You tried on three white dresses, two red dresses, a green dress and a blue dress. Your friend tried on two black dresses, a red dress, a white dress, and a yellow dress. What is the probability that you both chose a white dress? $P(w \text{ and } w) = \frac{3}{7} \cdot \frac{1}{C}$