Summing to 180°

1. The measure of the angle a, pictured to the right is \qquad .
2. Therefore the sum of the two angles \mathbf{b} and \mathbf{c} pictured here is equal to \qquad
3. Angles \mathbf{b} and \mathbf{c} are called \mathbf{a} "linear pair", because together they form a straight line.

4. Apply this information to answer the following questions...

a. If $\mathrm{m}<\mathrm{d}=45^{\circ}$, then $\mathrm{m}<\mathrm{e}=$ \qquad .
e. If $m<g=149^{\circ}$, then $m<j=$ \qquad .
b. If $\mathrm{m}<\mathrm{i}=37^{\circ}$, then $\mathrm{m}<\mathrm{e}=$ \qquad .
f. If $m<i=21^{\circ}$, then $m<j=$ \qquad .
c. If $m<j=170^{\circ}$, then $m<k=$ \qquad .
g. If $\mathrm{m}<\mathrm{d}=14^{\circ}$, then $\mathrm{m}<\mathrm{i}=$ \qquad .
d. If $\mathrm{m}<\mathrm{g}=153^{\circ}$, then $\mathrm{m}<\mathrm{f}=$ \qquad .
H. If $m<h=130^{\circ}$, then $m<j=$ \qquad .

Now let's get a little tougher!

5. Each of the following diagrams show parallel lines, cut by a transversal. Apply the information above to evaluate the value of each variable. Show work.
a.

$x=$ \qquad
$y=$ \qquad
b.

$$
x=
$$

\qquad
$y=$ \qquad
c.

$$
x=
$$

\qquad
$y=$ \qquad
d.

$$
x=
$$

$$
x=
$$

$y=$ \qquad
5. L is parallel to M and T is parallel to W (forming a parallelogram). Opposite angles in a parallelogram, such as <a and <b are equal in measure. Apply what you know about parallelograms to evaluate the measure of each angle by finding the value of y. Show work.

$$
\begin{aligned}
& \mathrm{m}<\mathrm{a}= \\
& \mathrm{m}<\mathrm{b}= \\
& \mathrm{m}<\mathrm{c}= \\
& \mathrm{m}<\mathrm{d}= \\
& \hline
\end{aligned}
$$

6. Quadrilateral $A B C D$ is a parallelogram. Apply what you learned in \#5 to evaluate the measure of each of the angles in the parallelogram. Show work.

$m<A=$ \qquad
$\mathrm{m}<\mathrm{B}=$ \qquad
$\mathrm{m}<\mathrm{C}=$ \qquad
$\mathrm{m}<\mathrm{D}=$ \qquad
7. Look at the picture in \#6. The following pairs of angles are "pairs of consecutive angles" in a parallelogram: $\angle D$ and $\angle C, \quad<C$ and $\angle B, \quad<B$ and $\angle A, \quad<A$ and $\angle D$

Applying what you know about angles and using \#6 if needed, what is the relationship between consecutive angles in a parallelogram?

