$8^{\text {th }}$ Grade Math M-Step Sample Performance Task ANSWER KEY

Question 1

Line Guide

HEARTBEATS

In this task, you will use data to create a model that shows the relationship between animal body weight and pulse rate measures. Then you will examine additional data to evaluate your model.

A study states that the relationship between an animal's pulse rate and body weight is approximately linear. The study data are below.

Table 1. Average Body Weight and Average Pulse Rate of Seven Animals

Animal	Average Body Weight (in kilograms)	Average Pulse Rate (in beats per minute)
Cat	3	130
Goat	28	75
Sheep	56	75
Pig	192	95
Ox	362	48
Cow	465	66
Horse	521	34

The data from Table 1 are plotted below. Create a linear model of these data.

IU ?lused the points $(3,130)$ and $(362,48)$

HEARTBEATS

In this task，you will use data to create a model that shows the relationship between animal body weight and pulse rate measures．Then you will examine additional data to evaluate your model．

A study states that the relationship between an animal＇s pulse rate and body weight is approximately linear．The study data are below．

Table 1．Average Body Weight and Average Pulse Rate of Seven Animals

Animal	Average Body Weight（in kilograms） Cat Average Pulse Rate（in beats per minute）	
Goat	28	130
Sheep	56	75
Pig	192	75
Ox	362	48
Cow	465	66
Horse	521	34

What is the equation of the line you drew in Question 1？
$y=-.23 x+130.69$

蒾？
1st find the slope： $m=(130 \cdot 48) /(3 \cdot 362)$
$\mathrm{m}=(82 /(-359)$
$m=.23$

3rd put the value of the
slope and the y－intercept
into the equation
$y=m x+b$
$y=-.23 x+130.69$

3
2nd use one of the points
and the slope to substitute
the values into $y=m x+b$
then solve for b ：
$130=(-23)^{*}(3)+b$
$130=-.69+b$
$+.69 \quad+.69$
$130.69=b$

2nd use one of the points the values into $y=m x+b$ $130=(-23)^{*}(3)+b$ $130=-.69+b$
$+.69+.69$
$130.69=b$

3rd put the value of the
slope and the y－intercept
into the equation
$y=m x+b$
$y=-.23 x+130.69$

HEARTBEATS

In this task, you will use data to create a model that shows the relationship between animal body weight and pulse rate measures. Then you will examine additional data to evaluate your model.

A study states that the relationship between an animal's pulse rate and body weight is approximately linear. The study data are below.

Table 1. Average Body Weight and Average Pulse Rate of Seven Animals

Animal	Average Body Weight (in kilograms)	Average Pulse Rate (in beats per minute)
Cat	3	130
Goat	28	75
Sheep	56	75
Pig	192	95
Ox	362	48
Cow	465	66
Horse	521	34

Interpret the slope of the line from Question 1 in the context of the situation.

Type your answer in the space provided.

My slope ended being $\mathrm{m}=-.23$
This means the average pulse rate DECREASES about 23 per 1 kilogram INCREASE in body weight.

OR
This means the average pulse rate INCREASES about . 23 per 1 kilogram DECREASE in body weight.

HEARTBEATS

In this task，you will use data to create a model that shows the relationship between animal body weight and pulse rate measures．Then you will examine additional data to evaluate your model．

A study states that the relationship between an animal＇s pulse rate and body weight is approximately linear．The study data are below．

Table 1．Average Body Weight and Average Pulse Rate of Seven Animals

Animal	Average Body Weight（in kilograms）	Average Pulse Rate（in beats per minute）
Cat	3	130
Goat	28	75
Sheep	56	75
Pig	192	95
Ox	362	48
Cow	465	66
Horse	521	34

Part A
Based on the equation from Question 2，predict the average pulse rate in beats per minute of an animal that weighs 6000 kilograms．
－1249．31

HEARTBEATS

In this task, you will use data to create a model that shows the relationship between animal body weight and pulse rate measures. Then you will examine additional data to evaluate your model.

A study states that the relationship between an animal's pulse rate and body weight is approximately linear. The study data are below.

Table 1. Average Body Weight and Average Pulse Rate of Seven Animals

Animal	Average Body Weight (in kilograms)	Average Pulse Rate (in beats per minute)
Cat	3	130
Goat	28	75
Sheep	56	75
Pig	192	95
Ox	362	48
Cow	465	66
Horse	521	34

Explain whether the predicted average pulse rate in Part A is reasonable in the context of the situation.

The average pulse rate of-1,249.31 in Part A is NOT reasonable. Animals that are living have a positive pulse rate.

Palse
Fag 1

HEARTBEATS

In this task, you will use data to create a model that shows the relationship between animal body weight and pulse rate measures. Then you will examine additional data to evaluate your model.

A study states that the relationship between an animal's pulse rate and body weight is approximately linear. The study data are below.

Table 1. Average Body Weight and Average Pulse Rate of Seven Animals

Animal	Average Body Weight (in kilograms)	Average Pulse Rate (in beats per minute)
Cat	3	130
Goat	28	75
Sheep	56	75
Pig	192	95
Ox	362	48
Cow	465	66
Horse	521	34

The body weight and pulse rate of a guinea pig and rabbit are given in the table below.

Animal	Average Body Weight (in kg)	Average Pulse Rate (in beats per minute)
Guinea Pig	1	250
Rabbit	2.5	265

If the study had included these data, would this change the model relating average body weight and average pulse rate? How do you know?

Yes, it would change the model relating average body weight and average pulse rate.

The data points $(1,250)$ and $(2.5,265)$ could be considered outliers since they are further away from the rest of the data points. The current slope has an average pulse rate decrease of about. 23 per 1 kilogram in body weight. Using the 2 new data points would create a bigger derease in the average pulse rate per 1 kilogram in body weight.

