Learning Targets: Unit 6 Probability 7th Grade

	Unit 6 Probability	K	V
1.	I recognize that the probability of an event is a number between 0 and 1 that expresses the likelihood of the event happening.		
2.	I recognize that the closer a probability is to 1, the more likely it is to occur and the closer it is to 0, the less likely it is to occur, and a probability of $\frac{1}{2}$ is neither likely nor unlikely.		
3	I can approximate the probability of an event happening and use that information to make predictions. <i>Example: When rolling a</i> <i>number cube 600 times, predict that a 3 or 6 would be rolled</i> <i>roughly 200 times.</i>		
4.	I can gather data on an event and use its relative frequency to make predictions about its probability.		
5.	I can recognize if an event represents experimental or theoretical probability.		
6.	I can evaluate the theoretical probability of a given situation.		
7.	I can evaluate the experimental probability of a given situation.		
8.	I can create a probability model to represent a given situation and use it to calculate a probability.		
9.	I can compare experimental probability and theoretical probability and when there is a discrepancy identify possible reasons.		
10.	I can draw a tree diagram to determine the total number of outcomes in a given a situation.		
11.	I can apply the basic counting principle to find the total number of outcomes in a given situation.		
12.	I can use an organized list to find the probability of a compound event.		
13.	I can use a simulation to find the probability of a compound event.		
14.	I recognize that the probability of a compound event is a fraction where the numerator represents the actual outcomes and the denominator represents the total sample space.		
15.	I can distinguish the difference between an independent and a dependent situation involving probability.		

16	I can identify the probability of an independent situation.		
17.	I can identify the probability of a dependent situation.		
18.	I can use lists, table and tree diagrams to illustrate a sample space.		
19.	I can identify all the possible combinations for a given situation. (rolling double sixes)		