Lesson 2: Solving for Unknown Angles Using Equations

Student Outcomes

- Students solve for unknown angles in word problems and in diagrams involving complementary, supplementary, vertical, and adjacent angles.

Classwork

Opening Exercise (5 minutes)

Opening Exercise

Two lines meet at a point. In a complete sentence, describe the relevant angle relationships in the diagram. Find the values of r, s, and t.

The two intersecting lines form two pairs of vertical angles;
$s=25$, and $r^{\circ}=t^{\circ}$. Angles s° and r° are angles on a line and sum to 180°.

$$
\begin{aligned}
s & =25 \\
r+25 & =180 \\
r+25-25 & =180-25 \\
r & =155 \\
t & =155
\end{aligned}
$$

In the following examples and exercises, students set up and solve an equation for the unknown angle based on the relevant angle relationships in the diagram. Model the good habit of always stating the geometric reason when you use one. This is a requirement in high school geometry.

Example 1 (4 minutes)

Example 1

Two lines meet at a point that is also the endpoint of a ray. In a complete sentence, describe the relevant angle relationships in the diagram. Set up and solve an equation to find the value of p and r.

The angle r° is vertically opposite from and equal to the sum of the angles with measurements 28° and 16°, or a sum of 44°. Angles r° and p° are angles on a line and sum to 180°.

$$
\begin{array}{rlr}
r=28+16 & \text { Vert. } \angle s \\
r=44 & \\
p+(44) & =180 & \\
p+44-44 & =180-44 \\
p & =136 &
\end{array}
$$

Take the opportunity to distinguish the correct usage of supplementary versus angles on a line in this example. Remind students that supplementary should be used in reference to two angles, whereas angles on a line can be used for two or more angles.

Exercise 1 (4 minutes)

Exercise 1

Three lines meet at a point. In a complete sentence, describe the relevant angle relationship in the diagram. Set up and solve an equation to find the value of a.

The two a° angles and the angle 144° are angles on a line and sum to 180°.

$$
2 a+144=180 \quad \angle s \text { on a line }
$$

$$
\begin{aligned}
2 a+144-144 & =180-144 \\
2 a & =36 \\
a & =18
\end{aligned}
$$

Example 2 (4 minutes)

Encourage students to label diagrams as needed to facilitate their solutions. In this example, the label y° is added to the diagram to show the relationship of z° with 19°. This addition allows for methodical progress toward the solution.

Example 2

Three lines meet at a point. In a complete sentence, describe the relevant angle relationships in the diagram. Set up and solve an equation to find the value of z.

Let y° be the angle vertically opposite and equal in measurement to 19°. The angles z° and y° are complementary and sum to 90°.

$$
\begin{aligned}
z+y & =90 \\
z+19 & =90 \\
z+19-19 & =90-19 \\
z & =71
\end{aligned}
$$

Exercise 2 (4 minutes)

Exercise 2

Three lines meet at a point; $\angle A O F=144^{\circ}$. In a complete sentence, describe the relevant angle relationships in the diagram. Set up and solve an equation to determine the value of c.
$\angle E O B$, formed by adjacent angles $\angle E O C$ and $\angle C O B$, is vertical to and equal in measurement to $\angle A O F$.
The measurement of $\angle E O B$ is $c^{\circ}+90^{\circ}(\angle s$ add).

$$
\begin{array}{rlr}
c+90 & =144 \quad \text { Vert. } \angle s \\
c+90-90 & =144-90 \\
c & =54 &
\end{array}
$$

Example 3 (4 minutes)

Example 3

Two lines meet at a point that is also the endpoint of a ray. The ray is perpendicular to one of the lines as shown. In a complete sentence, describe the relevant angle relationships in the diagram. Set up and solve an equation to find the value of \boldsymbol{t}.

The measurement of the angle formed by adjacent angles of 26° and 90° is the sum of the adjacent angles. This angle is vertically opposite and equal in measurement to the angle t°.

Let y° be the measure of the indicated angle.

$$
\begin{array}{ll}
y=116 & \angle s \text { add } \\
t=(y) & \text { Vert. } \angle s \\
t=116 &
\end{array}
$$

Exercise 3 (4 minutes)

Exercise 3

Two lines meet at a point that is also the endpoint of a ray. The ray is perpendicular to one of the lines as shown. In a complete sentence, describe the relevant angle relationships in the diagram. You may add labels to the diagram to help with your description of the angle relationship. Set up and solve an equation to find the value of v.

One possible response: Let x° be the angle vertically opposite and equal in measurement to 46°. The angles x° and v° are adjacent angles, and the angle they form together is equal to the sum of their measurements.

$$
\begin{array}{ll}
x=46 & \text { Vert. } \angle s \\
v=90+46 & \angle s \text { add } \\
v=136 &
\end{array}
$$

Example 4 (4 minutes)

Example 4

Three lines meet at a point. In a complete sentence, describe the relevant angle relationships in the diagram. Set up and solve an equation to find the value of x. Is your answer reasonable? Explain how you know.

The angle x° is vertically opposite from the angle formed by the right angle that contains and shares a common side with an 8° angle.

$$
\begin{aligned}
& x=90-8 \quad \angle s \text { add and vert. } \angle s \\
& x=82
\end{aligned}
$$

The answer is reasonable because the angle marked by x° is close to appearing as a right angle.

Exercise 4 (4 minutes)

Exercise 4
Two lines meet at a point that is also the endpoint of two rays. In a complete sentence, describe the relevant angle relationships in the diagram. Set up and solve an equation to find the value of x. Find the measurements of $\angle A O B$ and $\angle B O C$.
$\angle A O C$ is vertically opposite from the angle formed by adjacent angles 90° and 25°.

$$
\begin{aligned}
2 x+3 x & =90+25 \quad \angle s \text { add and vert. } \angle s \\
5 x & =115 \\
x & =23 \\
\angle A O C & =2(23)^{\circ}=46^{\circ} \\
\angle B O C & =3(23)^{\circ}=69^{\circ}
\end{aligned}
$$

Exercise 5 (4 minutes)

Exercise 5

a. In a complete sentence, describe the relevant angle relationships in the diagram. Set up and solve an equation to find the value of x. Find the measurements of $\angle A O B$ and $\angle B O C$.
$\angle A O B$ and $\angle B O C$ are complementary and sum to 90°.

$$
\begin{aligned}
& 5 x+(2 x+20)=90 \quad \text { complementary } \angle s \\
& 7 x+20=90 \\
& 7 x+20-20=90-20 \\
& 7 x=70 \\
& x=10 \\
& \angle A O B=5(10)^{\circ}=50^{\circ} \\
& \angle B O C=2(10)^{\circ}+20^{\circ}=40^{\circ}
\end{aligned}
$$

b. Katrina was solving the problem above and wrote the equation $7 x+20=90$. Then, she rewrote this as $7 x+20=70+20$. Why did she rewrite the equation in this way? How does this help her to find the value of x ?

She grouped the quantity on the right-hand side of the equation similarly to that of the left-hand side. This way, it is clear that the quantity $7 x$ on the left-hand side must be equal to the quantity 70 on the right-hand side.

Closing (1 minute)

- In every unknown angle problem, it is important to identify the angle relationship(s) correctly in order to set up an equation that yields the unknown value.
- Check your answer by substituting and/or measuring to be sure it is correct.

Lesson Summary

- To solve an unknown angle problem, identify the angle relationship(s) first to set up an equation that will yield the unknown value.
- Angles on a line and supplementary angles are not the same relationship. Supplementary angles are two angles whose angle measures sum to 180° whereas angles on a line are two or more adjacent angles whose angle measures sum to 180°.

Exit Ticket (3 minutes)

Name \qquad Date \qquad

Lesson 2: Solving for Unknown Angles Using Equations

Exit Ticket

Two lines meet at a point that is also the vertex of an angle. Set up and solve an equation to find the value of x. Explain why your answer is reasonable.
 MATH'

Exit Ticket Sample Solutions

Two lines meet at a point that is also the vertex of an angle. Set up and solve an equation to find the value of x. Explain why your answer is reasonable.

$$
\begin{aligned}
& 65+(90-27)=x \\
& x=128 \\
& O R \\
& y+27=90 \\
& y+27-27=90-27 \\
& y= 63 \\
& 65+y= x \\
& 65+(63)= x \\
& x=128
\end{aligned}
$$

The answers seem reasonable because a rounded value of y as 60 and a rounded value of its adjacent angle 65 as 70 yields a sum of 130 , which is close to the calculated answer.

Problem Set Sample Solutions

Note: Arcs indicating unknown angles begin to be dropped from the diagrams. It is necessary for students to determine the specific angle whose measure is being sought. Students should draw their own arcs.

1. Two lines meet at a point that is also the endpoint of a ray. Set up and solve an equation to find the value of c.

$$
\begin{aligned}
c+90+17 & =180 \quad \angle \text { s on a line } \\
c+107 & =180 \\
c+107-107 & =180-107 \\
c & =73
\end{aligned}
$$

Scaffolded solutions:

a. Use the equation above.
b. The angle marked c°, the right angle, and the angle with measurement 17° are angles on a line, and their measurements sum to 180°.
c. Use the solution above. The answer seems reasonable because it looks like it has a measurement a little less than a 90° angle.
2. Two lines meet at a point that is also the endpoint of a ray. Set up and solve an equation to find the value of a. Explain why your answer is reasonable.

$$
\begin{aligned}
a+33 & =49 \quad \angle s \text { add and vert. } \angle s \\
a+33-33 & =49-33 \\
a & =16
\end{aligned}
$$

The answers seem reasonable because a rounded value of a as 20 and a rounded value of its adjacent angle 33 as 30 yields a sum of 50, which is close to the rounded value of the measurement of the vertical angle.

3. Two lines meet at a point that is also the endpoint of a ray. Set up and solve an equation to find the value of w.

$$
\begin{aligned}
w+90 & =125 \quad \angle s \text { add and vert. } \angle s \\
w+90-90 & =125-90 \\
w & =35
\end{aligned}
$$

4. Two lines meet at a point that is also the vertex of an angle. Set up and solve an equation to find the value of m.

$$
\begin{aligned}
(90-68)+24 & =m \quad \angle s \text { add and vert. } \angle s \\
m & =46
\end{aligned}
$$

5. Three lines meet at a point. Set up and solve an equation to find the value of r.

$$
\begin{aligned}
r+122+34 & =180 \quad \angle s \text { on a line and vert. } \angle s \\
r+156 & =180 \\
r+156-156 & =180-156 \\
r & =24
\end{aligned}
$$

6. Three lines meet at a point that is also the endpoint of a ray. Set up and solve an equation to find the value of each variable in the diagram.

$$
\begin{array}{rlrl}
v=90-51 & & \text { Complementary } \angle s \\
v=39 & & \\
w+39+51+43 & =180 & & \angle \text { s on a line } \\
w+133 & =180 & \\
w+133-133 & =180-133 & & \\
w & =47 & & \\
x=51+43 & & \text { Vert. } \angle s \\
x=94 & & \\
y & =39 & &
\end{array}
$$

7. Set up and solve an equation to find the value of x. Find the measurement of $\angle A O B$ and of $\angle B O C$.

$$
\begin{aligned}
& \\
& \hline A \\
&(2 x-15)^{\circ} \\
&13 x-15)+11 x=180 \\
& 13 x-15=180 \\
& 13 x-15+15=180+15 \\
& 13 x=195 \\
& x \text { Supplementary } \angle s \\
& 15 \\
& \hline 15
\end{aligned}
$$

The measurement of $\angle A O B: 2(15)^{\circ}-15^{\circ}=15^{\circ}$
The measurement of $\angle B O C: 11(15)^{\circ}=165^{\circ}$

Scaffolded solutions:

a. Use the equation above.
b. The marked angles are angles on a line, and their measurements sum to 180°.
c. Once 15 is substituted for x, then the measurement of $\angle A O B$ is 15° and the measurement of $\angle B O C$ is 165°. These answers seem reasonable since $\angle A O B$ is acute and $\angle B O C$ is obtuse.
8. Set up and solve an equation to find the value of x. Find the measurement of $\angle A O B$ and of $\angle B O C$.

$$
\begin{aligned}
x+8+2 x & =90 \\
3 x+8 & =90 \\
3 x+8-8 & =90-8 \\
3 x & =82 \\
x & =27 \frac{1}{3}
\end{aligned}
$$

The measurement of $\angle A O B:\left(27 \frac{1}{3}\right)^{\circ}+8^{\circ}=35 \frac{1}{3}$ 。
The measurement of $\angle B O C$: $2\left(27 \frac{1}{3}\right)^{\circ}=54 \frac{2}{3}$ 。
9. Set up and solve an equation to find the value of x. Find the measurement of $\angle A O B$ and of $\angle B O C$.

$$
\begin{aligned}
4 x+5+5 x+22 & =180 \\
9 x+27 & =180 \\
9 x+27-27 & =180-27 \\
9 x & =153 \\
x & =17
\end{aligned}
$$

The measurement of $\angle A O B: 4(17)^{\circ}+5^{\circ}=73^{\circ}$

The measurement of $\angle B O C$: $5(17)^{\circ}+22^{\circ}=107^{\circ}$
10. Write a verbal problem that models the following diagram. Then, solve for the two angles.

One possible response: Two angles are supplementary. The measurement of one angle is five times the measurement of the other. Find the measurements of both angles.

$$
\begin{aligned}
10 x+2 x & =180 \quad \text { Supplementary } \angle s \\
12 x & =180 \\
x & =15
\end{aligned}
$$

The measurement of Angle 1: $10(15)^{\circ}=150^{\circ}$
The measurement of Angle 2: $2(15)^{\circ}=30^{\circ}$

