\qquad

$7^{\text {th }}$ Grade Accelerated Math

For 1-24, evaluate each completely. Show work on blank piece of paper when possible.

1. $(-5)(-7)(2)$
\#1 answer: \qquad
2. $-14+(-5)$
\#4 answer: \qquad
3. $-6 \cdot 5$
\#7 answer: \qquad
4. $-14+8-5-8$
\#10 answer: \qquad
5. $\frac{-72}{-9}$
\#13 answer: \qquad
6. $a^{2}-49$ $a=-7$
\#16 answer: \qquad
7. $2 \frac{1}{8}+\frac{3}{4}$
\#20 answer: \qquad
8. $-8 \div-4 \frac{4}{7}$
\#21 answer: \qquad
\#19 answer: \qquad
9. $-3 \frac{1}{6}+3 \frac{3}{4}$
10. $2 \frac{1}{8} \cdot \frac{4}{5}$
\qquad
11. $-\mathrm{a}-\mathrm{b}$
$a=4, b=|-3|$
\#17 answer:
\#18 answer: \qquad
12. $-2 \frac{1}{8} \div 6 \frac{1}{2}$
13. $9-13$
\#2 answer: \qquad
14. $-4-(-3)$
\#5 answer: \qquad
15. $-28 \div-4$
\#8 answer: \qquad
16. $-5-7+3+3$
\#11 answer: \qquad
17. $-\mathrm{a}+-15$
$a=-2$
\#14 answer: \qquad \#15 answer: \qquad
18. $(-7)^{2} \bullet-2+8$
19. $a-b$ $a=-9, b=-7$
\qquad
\qquad \#24 answer: \qquad
20. Julie is a cheerleader and is making a banner to use at games. She needs $1 \frac{8}{9}$ of a yard of material for the banner, but she only has $\frac{3}{4}$ of a yard right now. Distinguish how much more material she needs? Show your work for full credit! \#25 answer: \qquad
21. An Italian sausage is 10 inches long. Distinguish how many pieces of sausage can be cut from the 10 -inch piece of sausage if each piece is to be two-thirds of an inch? Show your work for full credit!
\#26 answer: \qquad
22. Ryan is planting a garden that takes up $\frac{1}{4}$ of his backyard. He plans to plant flowers in only $\frac{1}{3}$ of the garden. Distinguish how much of his backyard will be made up of flowers? Show your work for full credit!
\#27 answer: \qquad
23. Fill in the table below:

Fraction	Decimal	Percent
$\frac{3}{4}$		
		$\mathbf{9 \%}$
$\frac{1}{9}$		

For 29-40, evaluate each completely.

29. $\sqrt{81}$
30. $-\sqrt{36}$
31. $\sqrt[8]{27}$
32. $-\sqrt[3]{125}$
\#29 answer: \qquad \#30 answer: \qquad \#31 answer: \qquad \#32 answer: \qquad
33. $\sqrt{-25}$
34. $\sqrt{289}$
35. $\sqrt[8]{-125}$
36. $\sqrt[8]{216}$
\#33 answer: \qquad \#34 answer: \qquad \#35 answer: \qquad \#36 answer: \qquad
37. $\pm \sqrt{\frac{64}{100}}$
38. $\sqrt{\frac{16}{49}}$
39. Find the square roots of 64
\qquad \#38 answer: \qquad \#39 answer: \qquad
40. $\sqrt{3(4)-16 \div 4+9 \cdot 2-1}$

For 41-43, estimate each to the nearest tenths place .
41. $\sqrt{52}$
42. $\sqrt{7}$
43. $\sqrt{97}$
\#40 answer: \qquad \#41 \qquad \#42 \qquad \#43 \qquad
Order the following from least to greatest. 44. $\sqrt{7}, 3, \pi, \sqrt{5}, 2,3.5$ \#44: \qquad

For 45-47, write each of the following numbers in scientific notation.
45. 820,000,000
46. 0.0000065
47. 6.7E-5
\#45: \qquad \#46: \qquad \#47: \qquad

For 48-50, write each of the following numbers in standard notation.
48.
4.26×10^{-7}
49. 9.2×10^{-5}
50. 2.734×10^{12}
\#48: \qquad \#49: \qquad \#50: \qquad

For 51-54, write each answer using scientific notation.

51. $5.8 \times 10^{8}-2.3 \times 10^{5}$
52. $1.8 \times 10^{3}+5.4 \times 10^{6}$
\#51: \qquad
53. $8.4 \times 10^{9} \div 2.1 \times 10^{5}$
\#52: \qquad
54. $3.1 \times 10^{7} \bullet 4.6 \times 10^{3}$
\#54: \qquad

For 55-62, determine if the following numbers are Rational (R) or Irrational (I).
55. $\sqrt{5}$
56. π
57. $\sqrt{16}$
58. 58.71
\#55 \qquad \#56 \qquad
\#57 \qquad
\#58 \qquad
59. 11
60. -3
61. 7.13945...
62. 5.464646...
\#59 \qquad \#60 \qquad \#61 \qquad \#62 \qquad

For 63-67, use the following information. Mr. Roy's first hour earned the following scores (as a percent) on this test:
$94,88,85,96,81,74,88,91,101,98,93,82,34,77,83$
63. Identify the mean score on the test. (Nearest tenth)
\#63 \qquad
64. Identify the median score on the test.
\#64 \qquad
65. Identify the mode(s).
\#65 \qquad
66. Identify the range .
\#66 \qquad
67. Distinguish which of the above is the best way to represent this data
(the best measure of central tendency)? WHY?
\#67 \qquad

